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Abstract

This paper presents an efficient method for extracting a multi-model interpolation function from a
nonlinear system.  The multi-model interpolation function consists of couple simplified time-varying
models in neural-network structure to dynamically approximate the nature of the physical phenomena to
be interpolated and extrapolated.  The purpose of using the multi-model interpolation function is to
perform a real-time approximation.  This paper demonstrates the interpolation in a simulated
environment, the underwater acoustic transmission loss generated from the NAVY-standard acoustic
propagation-loss model ASTRAL, which is not suited to real-time operation.  The interpolation
includes initial learning period that is on the order of 20 minutes (more or less time depends on the size
of the parameter intervals and the complexity of the ocean environment), and the subsequent
interpolation speed will be measured in fractions of a second, a several orders-of-magnitude
improvement over conventional calculations.   In addition, for the example presented here, the
interpolation error is within 1% of the actual transmission-loss value in a root-mean-square (RMS)
sense.

Keywords: Multi-model Interpolation; Multi-objective SPSA; Nonlinear Interpolator; Neural
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1 Introduction

This paper develops a model-fitting technique to perform the interpolation and extrapolation of a
nonlinear time-varying system. The development is demonstrated on the problem of transmission loss of
underwater sound.  The technique involves simplified time-varying multiple models, neural networks
(NN), and multi-objective simultaneous perturbation stochastic approximation (MSPSA).  The
simplified models represent the local phenomena that change in time; NN projects the model variations;
MSPSA trains the NN-weights.  The MSPSA was first introduced in Chin [1] and is based on the
simultaneous perturbation stochastic approximation (SPSA) developed by Spall [2].  A collection of
applications of NN in adaptive control of nonlinear systems can be found in Ng [3].  The localized
multi-model technique has shown accuracy and efficiency in the transmission loss interpolation.

The transmission loss function is highly oscillatory and quite variable.  There is no simple
representation available to describe the sound wave propagation accurately.  The various local medium
interactions and reflections give the function its erratic structure.  An interpolation method suggested for
time-variant systems in Gohberg (Ed.) [4, pp. 153-259] was too complicated and worked only on a
single model.  In a previous study, a linearized interpolation approach, a simple linear fit between
observed data points, was suggested and tried in FY98 Progress Repot to DARPA [5].  Although the
linearized interpolator would save computation time over the actual simulation calculation, the
preparation of the base transmission loss curves and the massive amount of data handling ultimately
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make the linearized interpolation intractable.  Also, the resulting interpolation errors were not uniform
throughout the parameter space interval desired for the interpolation.

This particular model-fitting design uses two independent neural networks as the base of
interpolation. The models are designed to fit the local physical phenomena and the NN’s store the
model variation information.  The interpolator is expected to approximate the sound wave transmission
loss accurately within the training area along the transmission pass, therefore the training process should
provides NN the intermittent information.  There are two ways to provide the intermittent information:
1) from an accurate model representation for the inverse estimation like the one introduced in Chin [1];
or 2) the intermittent observations derived from a base model like the ones discussed here for
interpolation.  The intermittent observations are accessible in most simulation packages; the utilization
allows the model-fitting technique to use less number of simulated transmission passes and to gain more
information in preparation of the interpolator.

In comparison with a simple linearized interpolator, the model-fitting technique described here
requires longer time per interpolation, but takes orders of magnitude less preparation time. The
interpolation time for the model-fitting technique in comparison with the detailed simulation time is
negligible.  The example presented in this paper shows that using 10 propagation loss curves is enough
to train the interpolator for a large portion of the parameter space where interpolation is desired. The
base-propagation loss curves for linearized interpolation would use order of magnitude amount more
transmission curves to achieve a comparable level of accuracy. The ability to use a few propagation-
loss curves to train the NN-weights for accurate interpolation makes the model-fitting technique
desirable in planing a real-time simulation-training mission that was questionable for the linearized
interpolator.

The NN-weight training procedure also is a very important task for the interpolator; it should
consider the matches for intermittent points and the divergent of two different objectives in the two
models.  Given the variability and oscillatory behavior of the function, the training process also should
have some checks and balances.  One way to deal with the multiple-objective problem is summing
these objectives and forcing them into a single objective algorithm.  However, it is then very hard to find
the balance among the objectives and the convergence speed, see Chin [1].  The MSPSA algorithm
introduced in Chin [1] optimizes the independent model parameter sets (the parameters in one set have
no relationship with the parameters in other set) from relevant objectives and is suitable for training the
NN-weights here.  Also, the parameter dependencies are different for the two models, the algorithm
could tailor the minimization procedure to accommodate the differences.  In the end, MSPSA used
small number of detailed simulation curves to train the interpolation functions, achieved acceptable root-
mean-square errors from the original simulation results, and made real-time operation feasible.

2 Underwater Sound Transmission Loss

Follow the principle of underwater sound in Urick [6], the sound propagating through the ocean was
described in three physical phenomena:
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• Sound spreads while it propagates through the medium in three different ways: spherically,
cylindrically, and linearly.

• The medium absorbs sound energy, with the rate of absorption varying with the water temperature
and the acoustic frequency.

• Sound signals are also influenced by the reflections from the top and bottom of the ocean water
column. This influence is a function of the local bottom bathymetry and composition, as well as the
sea surface conditions (wave height).

These three effects also vary with the frequency of the sound signal.

Using two models could describe these three phenomena.  One model approximates the energy
spreading and absorption because their equations are similar; the other model approximates the
reflections.  The energy dissipation models dependents on water temperature at the referenced local
areas; the reflection model depends on both site structures and range from the sound source.

The transmission losses are represented as a ratio of the sound intensity at a given range, say p
nmi, to the intensity of a reference range.  If TL represents the transmission loss and T represents the
signal intensity, the sub-indexes represent the values evaluated at the reference points, respectively.
Then, the relation between the transmission loss and signal intensity are as following:
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The intensity T changes along the transmission pass in a
non-linear pattern.  For easier to approximate the
intensity reduction, the sound propagation (the thick line
inside the box on Figure 1) is divided into a fine fixed-
interval grid, the grid points are located at unit marks for
convenience of data handling, in our study here uses
nautical mile marks.  The marks 0, p on Fig. 1 are the
reference points near source and at receiver.  The marks

k,,2,1 L are the reference points on the grids.

The total sound transmission loss between source and receiver could be expressed as the
accumulation of transmission losses along the pass, as shown in (2); an expansion of Equation (1):
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The examples in Section 5 use the nautical mile as grids and 3-ft as the initial 0 reference points.  The
receiver mark p is located between grids k and k+1 include k+1.
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Figure 1: The reference points and sound propagation
pass
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At each reference points, },,,1,0{ pki L∈ , the transmission loss is also the total effect from all three
individual physical effects that are represented by two models.  Let E

iT and R
iT  be the signal intensity

reduction value due to energy dissipation and reflection between the reference points 1−i and i .  The
total sound wave intensity at the reference point i would be

( )R
i

E
ii TTdT −= . (3)

where d is the distance between interpolating position and reference point 1−i , in (3) the interpolating
position is the position of reference point i .  Substitute iTi ∀ into (2), and then computes the total
transmission loss from source to receiver.

To simulate
iT  from detailed non-linear models are both computational and computer I/O intensive

operations. Simplification of the data structure and retrieval system are the first couple steps in reducing
the computational burden and data handling problems.  Because mass amount of data for the water
temperature profiles and detailed ocean basin information along the transmission pass are required in
computing the transmission losses from the non-linear accurate models. This paper utilizes a pair of NN
for so purpose.

The equation for energy dissipation intensity reduction formula E
iT  is a simple constant varying

mostly with the water temperature (assuming uniform value within two reference points) and could
theoretically have value range between 0 and 3 (not including 0).  For generality, the equation is
expressed in two degree of freedom among E

iT ’s as following: 
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where s and r are two constants with values between 0 and 1 that will be the output from NN (the
outcome could be in expected range for the interpolation area of interests, instead of the theoretical
range).  There is no simple expression for R

iT .  This paper uses the first order of trigonometric function
to represent the energy gain from reflection as following:
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where a, b, φ, and ϕ are four coefficients and would be the output from NN, π  is the radian constant,
3.14159L.  This equation may be changed due to environmental differences, e.g., with a higher order
representation for a more complicated environment.

The neural-networks are designed for tracking the variations of the coefficients used in (4) and (5)
among the intensity reduction functions due to environmental change along the transmission pass.  The
neural-network for the energy dissipation model is a two-hidden layer network with four inputs and two
outputs.  The number of weights for each of the two-hidden layers is five.  The four inputs are
frequency, source depth, depth at the initial reference point, and delta range from the interpolation point
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to the initial reference point.  The two outputs denoted by s and r are the spreading factor and
absorption rate as defined before.  The neural-network for the reflection model is a one-hidden layer
network with four inputs and four outputs.  The number of weights for the hidden layer should be
changed according to the size of the geographical area, the bottom type and the sound frequency; a
larger area, more complex bottom types and higher frequencies will use a larger number of the NN-
weights.  The inputs for this network are frequency, source depth, depth at the initial reference point,
and range of the range from source.  The outputs for this network are the coefficients of a trigonometric
equation.

3 Interpolation Setting

The underwater sound transmission loss can be expressed in a more general term, such as a system y
consists of two models denoted by )(•f  and ( )•g , and

( ) ( )( )••= gfFy , , (6)

 where the function F is nonlinear and model f and g are varying with time.  The value of y can be
accumulated from a sequence of intermediate function values iy and

∑
=
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where iy is evaluated at the reference point i and { }pki ,,,1,0 L∈ .  Reference points 0 and p are located
at the boundary points; reference points { }k,,1 L  are located at the internal grid points along the
transmission pass.  The individual iy is also a function of ( )•if  and ( )•ig  and

( ) ( )( )••= iii gfFy , (8)

Assuming the functions ( ) if i ∀•  can be approximated by the same function with different coefficients
such as the one in (4), likewise for ( ) ig i ∀•  as the one in (5).

Let NN denote a neural network, with NNf and NNg the neural networks for models f and g,
respectively.  Assume x f,i and xg,i are the input terms of NNf and NNg at the interval between reference
points i-1 and i.  Then,
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where 
if and 

ig are the neural network output parameters associated with the two models at the same
interval and will be used as the coefficients of ( )•if  and ( )•ig .  Then these two functions could be
defined as ( )fifi wxf |,

 and ( )gigi wxg |,
, where 

gf ww , are the weights of NNf, NNg. Function ( )•if  is the
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function of x f,i based on the weight values of NNf; similarly function ( )•ig  is the function of xg,i based on
the weight values of NNg.  Let gf θθ ˆ,ˆ be the estimated variables for

gf ww , and ŷ be the approximation

value for y and

( ) ( )[ ]∑
=

=
p

i
gigififi xgxfFy

0
,,

ˆ|,ˆ|ˆ θθ . (10)

We are trying to minimize ( )2ŷy −  and combinations of ( )2ˆii yy −  for all transmission loss curves to find
the best fit gf θθ ˆ,ˆ of

gf ww , .  Then we could use ŷ as an interpolation value from the given sets of input

{ }ifx ,
 and { }igx , , i.e. the input parameters defined at the reference points along sound transmission pass

as they are define in Section 2.  This setting may easily be expanded into a system that involves more
than two models and may also be used in a control environment.

4 The Training Algorithm

The multiple-objective simultaneous perturbation stochastic approximation (MSPSA) algorithm
presented in [1] is used to train the neural-network weights.  The algorithm attempts to minimize the
sum of the square difference between interpolation values and the computed values over the local
intervals, the reference points assumed in the derivation of the equations, as well as the entire data
range.  The differences are calculated at each computed value, according to the resolution of the data.
The minimizations are completed over iterations.  Any single iteration consists of many small steps from
the individual minimizations that are sequenced one-by-one; let us call the small step a minimization step.
The estimates of one minimization-step will be passed to the next step in the sequence as the previous
estimates of that step.  The estimates from the last step in the sequence will be the estimates of the
iteration.  The estimates of the iteration will be passed to the first minimization step in the next iteration
as the previous estimate of that step. This optimization algorithm assumes the data was generated with a
consistency setting, similar environment or limited interference.   Simulation data has less of a
consistency problem then the real data.  Even the inconsistency does exist among the data, the order of
the step sequence will not affect the outcome of the estimates, and it just effects the convergence speed.
The minimization-step procedure uses the equation stated in [2] as an iteration of the SPSA algorithm,
using two statistical perturbation estimates to approximate a gradient that updates the previous
estimates.

For convenience, let f represent the energy dissipation model and g represent the reflection model for
the underwater sound transmission loss system.  The subscript-index i indicate the local ranges along
the transmission loss curve.  Figure 2 shows the detailed training procedure of “one iteration” as follows:

1) Starting from the initial estimates or the previous iteration estimates, the first step (box 1) is to
minimize the local differences between yi and ( ) ( )( )gigfifii xgxfy θθ ˆ||ˆ|ˆ ,,

 on the weights of NNf while

holding the weights of NNg unchanged.

2) Using the 1st step estimates as the initials, the 2nd step (box 2) minimizes the full range difference
between y and ( ) ( )( )ixfxgy fifgigi ∀,ˆ||ˆ|ˆ ,, θθ  on the weights of NNg while holding the weights of NNf

unchanged.
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Figure 2 One Iteration of Training Algorithm

3) Initializing from the 2nd step estimates, the 3rd step (box 3) minimizes the summation of the square
differences between yi and ( ) ( )( )gigfifi xgxfy θθ ˆ|,ˆ|ˆ ,,  on the weights of NNf and NNg for a global fit.

4) Box 4 – indicates repeating steps 1, 2, and 3 for all source-receiver (SR) pairs.

5) Box 5 evaluations the estimates of weights on both NNf and NNg.   If the estimation error, ε , is
greater than 

min20.1 ε , the last known smallest error, then reject the estimates and repeat the
previous 4 steps.  If the estimation error is within min20.1 ε , then update the weights on both NNf

and NNg and proceed to the next iteration.

5. Example

ASTRAL (the Automated Signal Excess Prediction System (ASEPS) TRAnsmission Loss), is a Navy
standard model, included in the Navy’s Ocean and Atmospheric Master Library (OAML).  OAML is
a collection of configuration-controlled models and databases, maintained by the Naval Oceanographic
Office (NAVOCEANO).  ASTRAL was specifically designed to run rapidly, and is commonly used in
real-time simulations because it runs 10 to 1000 times faster than the traditionally more accurate
parabolic equation (PE) models, as well as other research models.

ASTRAL is primarily a range-dependent, adiabatic, range-smoothed mode theory model, with
additional separate algorithms to model important acoustic features that are not appropriately handled in
the primary algorithm.  In particular, ASTRAL uses separate algorithms for convergence zone and
surface duct propagation [6].   ASTRAL can predict the range averaged transmission loss and vertical
angular arrival structure, but only the former quantity is considered here.

The selected model is expected to be run for all propagation calculations required during the Navy
simulations in which is used. Therefore, ASTRAL was run for a variety of environmental conditions and
operational parameters deemed reasonable for the simulation.
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Assuming a simulation for purposes of real-time operator training, the oceanographic environment
for this example was located in the Sea of Japan.  For simplification, a single set of propagation paths
with varying bathymetric details was used in the example.  The differences between each of the paths
were in the receiver depth, source depth, sound frequency, and transmission range. We assumed that a
receiver was placed at certain discrete depths in a 200-ft interval from the surface, with the source
placed at various depths between the surface and 1500-ft.  Each source and receiver pair was
generated using different frequencies, from 20 Hz to 10000 Hz.  The total transmission range was 102
nmi; the resolution to which ASTRAL generated was 0.25 nmi.

The receiver depth, source depth, frequency, and transmission range define the parameter space
interval desired for the interpolation, or the interpolation area, which also defines the real-time operator
training area.  In order to have the interpolator work properly; it has to learn the characteristics of the
transmission loss from the data computed
within the interpolation area.  The main
criterion for data selection is that the
selected data has to contain all the important
features in the area.  For the time being, we
were using trial and error to select 10
source-receiver pairs, each of them at a
different frequency.  Figure 3 shows the
transmission loss surface formed by the 10
selected source-receiver pairs.  The Y-axis
in the Figure indicates the 10 selected pairs
from 1–10; the X-axis indicates the total
transmission range from 1 – 102 (102 nmi in
0.25 nmi resolution); and the Z-axis shows
the scales of the transmission losses from 50
dB to 100 dB.

Figure 4 shows the transmission loss surface formed by the interpolation values at the same grid
points as in Figure 2.  The interpolator learned the features from the first half of the range data, within
50 nmi. Figures 3 and 4 show the matching surface on the left half of the surfaces (shorter ranges < 50
nmi), while missing some characteristics on the right half of the surfaces (beyond 50 nmi).  When we
included all of the range data to train the interpolator, the spike on the top-left end of the surface in
Figure 4 was clearly shown on the surface formed by the interpolation values resulting from that
interpolator.  The RMS error for the transmission loss surface in Figure 4 is 0.5 dB, about 1 to 2% of
the actual loss values.   The interpolator surface showed in Figure 4 takes 360 iterations, for real-time
operation 200 iterations would be sufficient for a 25-nmi range operation area; the RMS error for the
smaller range operation area was about 1 dB in the case mentioned in the abstract.  Using the more
detailed simplification models, f̂ and ĝ , would have less RMS errors, but they will take a longer time
to train.

Figure 3 ASTRAL Generated Transmission Loss Surface
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6. Summary

This paper presents a model-fitting technique for
use as an interpolator for underwater acoustic
transmission loss.  This interpolator could be
useful in creating function approximation for one
local domain in the adaptive interpolator
discussed in Spall [8].  The error of this
interpolator was tolerable and the computation
speed was adequate for real-time training
operations.  There is a tradeoff between
accuracy and desired speed  the more
accuracy required the more time required for the
NN to train.  There is also a tradeoff between the
accuracy and the complexity of the operational
area.  There is room for improvement in the
optimum source-receiver pair selection and in the
estimation model formulations.  This technique

could be used for extrapolation and inversion processes.
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